

Home

Shop

Artikel

Der Weg zum EV

EV Komponenten

Die Fahrzeugauswahl

HV-Sicherung

EV Blog

Galerie

Abkürzungen

E-Tankstellen

Kontakt

Shop Produkte

FWH-400A Buss 59,00 €

19 Okt 2014

HV-Sicherung

Funktion

Eine Sicherung wird hauptsächlich dazu eingesetzt, um eine Leitung im Kurzschlussfall zu schützen. Sie verhindert eine Überhitzung der Leitung und somit einen möglichen Kabelbrand.

Der Schutz eines elektrischen Gerätes bzw. einer Komponente ist also nicht die primäre Aufgabe einer Sicherung.

Hochvoltsicherungen werden im Elektrofahrzeug in der Zuleitung von HV-Verbrauchern eingesetzt, z.B. von Antrieb, Heizung, Klimakompressor, DCDC-Wandler und anderen HV-Komponenten.

Details

Es gibt zwei Arten von Sicherungen

- AC-Sicherung für Wechselspannung
- DC-Sicherung für Gleichspannung

Eine AC-Sicherung wird nur dort eingesetzt, wo mit Wechselspannung gearbeitet wird. Z.B. im Haushalt oder in der Industrie.

Für ein Elektrofahrzeug muss eine DC-Sicherung verwendet werden, da die Hochvoltbatterie im Fahrzeug eine reine Gleichspannung liefert.

Im Gegensatz zu einer Wechselspannung besteht bei einer Gleichspannung die Gefahr, dass sich ein Lichtbogen nach dem Auslösen in der Sicherung bilden und nicht von alleine erlöschen kann. Das ist begründet durch den fehlenden Nulldurchgang der Gleichspannung. Um dem entgegenzuwirken, wird für die DC-Sicherungen in der Regel eine längere Trennstrecke und ein etwas anderes Gehäuse eingesetzt.

Eine reine AC-Sicherung kann deshalb aus diesen Gründen nicht als DC-Sicherung eingesetzt werden.

Sicherungen für hohe Spannungen und Ströme sind mit einem Quarzsand gefüllt, der zum einen den Druck durch das explosionsartige Verdampfen des Metallstreifens dämpfen und zum anderen die Bildung eines Lichtbogens verhindern soll.

Anwendung

Zur Auswahl der richtigen Sicherung müssen die folgenden drei Werte ermittelt werden.

Bemessungsstrom	Maximaler Kurzschlussstrom	Maximale Spannung
Der maximale Strom bei einer	Der Strom bei einer bestimmten	Die max. Spannung, mit der
bestimmten Spannung und	Spannung und Umgebungs-	die Sicherung sicher
Umgebungstemperatur, bei dem	temperatur, der erforderlich ist,	betrieben werden kann
die Sicherung dauerhaft betrieben	um die Sicherung innerhalb einer	
werden kann.	bestimmten Zeit auszulösen	

Die Daten für die Auswahlkriterien werden aus den Kenndaten des Verbrauchers ermittelt. Im folgenden Beispiel wird die Sicherung für den Elektroantrieb ermittelt.

Bemessungsstrom	Maximaler Kurzschlussstrom	Maximale Spannung
Der Bemessungsstrom wird über die Dauerleistung und Peakleistung des Elektromotors bestimmt.	Der maximale Kurzschlussstrom ergibt sich aus dem maximalen Entladestrom der eingesetzten Zellen.	Die maximale Spannung ergibt sich aus der Summe der maximalen Zell- spannungen.
<u>Dauerstrom:</u> 44kW / minimale Spannung = 44000W / 95V = <u>465A</u>	Max. Kurzschlussstrom: Batteriekapazität = 200Ah Max. Entladestrom = 10C (<10s)	Max. Spannung: Max. Batteriespannung = 120V
Peakstrom: 65kW (2 Min.) / min. Spannung = 65000W / 95V = 685A ⇒ Wird durch Leistungselektronik auf 650A begrenzt	Max. Kurzschlussstrom = 200A x 10 = <u>2000A</u>	

Es stehen z.B. von Bussmann DC-Sicherungen vom Typ FWH 500V für verschiedene Bemessungsströme zur Verfügung.

FWH

Specifications

Description: North American style stud-mount fuses.

Dimensions: See Dimensions illustration.

Ratings:

Volts: - 500Vac/dc

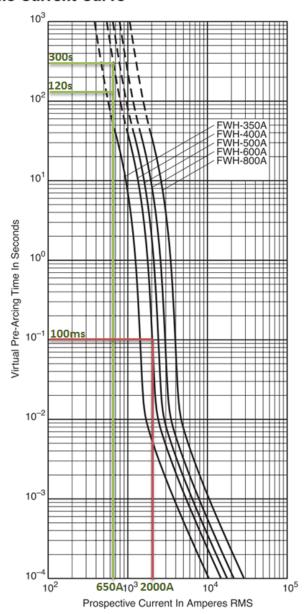
Amps: - 35-1600A

IR: — 200kA Sym. — 50kA @ 500Vdc

Catalog Numbers

Oatalog I	Electrical Characteristics			
	Rated	I²t (A² Sec)		
Catalog	Current		Clearing	Watts
Numbers	RMS-Amps	Pre-arc	at 500V	Loss
FWH-35B	35	34	150	8
FWH-40B	40	76	320	7.5
FWH-45B	45	105	450	7.5
FWH-50B	50	135	670	7.5
FWH-60B	60	210	900	9.9
FWH-70B	70	210	900	10.6
FWH-80B	80	305	1400	12.7
FWH-90B	90	360	1600	15
FWH-100B	100	475	2000	17
FWH-125B	125	800	3500	25
FWH-150B	150	1100	4600	30
FWH-175B	175	1450	6200	35
FWH-200B	200	1900	8500	40
FWH-225A	225	4600	23300	39
FWH-250A	250	6300	32200	41
FWH-275A	275	7900	40300	46
FWH-300A	300	9800	49800	51
FWH-325A	325	13700	63800	53
FWH-350A	350	14500	72900	58
FWH-400A	400	19200	96700	65
FWH-450A	450	24700	127000	74
FWH-500A	500	29200	149000	84
FWH-600A	600	41300	206000	108
FWH-700A	700	55000	298000	120
FWH-800A	800	76200	409000	129
FWH-1000A	1000	92000	450000	145
FWH-1200A	1200	122000	600000	180
FWH-1400A	1400	200000	1000000	210
FWH-1600A	1600	290000	1400000	230

- Rated Current RMS-Amps = Bemessungsstrom
- **Pre-arc** = Schmelzintegral; gibt die Menge an Energie an, die benötigt wird, um die Sicherung soweit zum Schmelzen zu bringen, bevor es zum Lichtbogen kommt
- Clearing at 500V = Ausschaltintegral bei 500V; gibt die Menge an Energie an, die benötigt


wird, damit die Sicherung den Stromkreis vollständig unterbricht

• Watts Loss = Verlustleistung bei RMS Current

Das Schmelzintegral ist ein physikalischer Wert, mit dem das Verhalten von Sicherungen beschrieben und untereinander verglichen werden kann. Es zeigt u.a., ob es sich um eine träge oder eine flinke Sicherung handelt.

Für den Langzeitbereich wird das virtuelle Schmelzintegral herangezogen, das zur Bestimmung der Auslösezeit verwendet wird.

Time-Current Curve

- Für einen maximalen Strom von 650A für 2 Minuten kommt die Kennlinie der 400A Sicherung FWH-400A in Betracht.
- Mit der FWH-400A Sicherung ist ein Dauerstrom von 465A für ca. 2x10³ Sekunden »30 Minuten möglich. Ein Wert, der in der Realität nicht erreicht werden kann, da 465A für 0,5 Stunden einer Kapazität von ca. 230Ah entsprechen, die Batterie jedoch theoretisch maximal 200Ah zur Verfügung stellt.

Theoretisch kann die Sicherung mit 650A für 5 Minuten betrieben werden. Dieser Wert wird jedoch nur bei einer Umgebungstemperatur von 21°C erreicht, da die Kennlinien nur für diese Temperatur gültig sind. Bei höheren Temperaturen kann die Sicherung bereits früher auslösen.

• Bei einem Kurzschlussstrom von 2000A, löst die FWH-400A spätestens nach 100ms aus.

Die FWH-500A würde bei einem Kurzschlussstrom von 2000A erst nach ca. 2 Sekunden auslösen, was viel zu lange dauern würde.

Es ist deshalb wichtig, die richtige Sicherung für das System auszuwählen, um die maximale Sicherheit im Fahrzeug zu gewährleisten.

Einsatz der HV-Sicherung im Elektrofahrzeug

Die HV-Sicherung sollte so nah wie möglich an der HV-Batterie platziert werden.

Im Idealfall ist die HV-Sicherung zusammen mit den Schützen in der HV-Batterie montiert. Ist das nicht möglich, so sollte das HV-Kabel von der HV-Batterie zu den Schützen und der Sicherung so kurz wie möglich gehalten und gut geschützt verlegt werden.

Je nach Leistung des Verbrauchers sollte auch die Verlustleistung der Sicherung berücksichtigt und für ausreichend Kühlung gesorgt werden.

Es gibt verschiedene Arten von Sicherungen, die für den Einsatz im Elektrofahrzeug in Frage kommen.

Im Folgenden eine Auflistung einiger Sicherungen.

DC Automotive Sicherung	FIVH - 4-QOA	DC Sicherung speziell für den Einsatz im Elektrofahrzeug. Vorteil: reine DC-Sicherung Nachteil: relativ teuer
AC/DC Industrie Sicherung	SIBA TOTAL TOT	Für hohe Spannungen und hohe Ströme AC und auch DC geeignet. Aufgrund der Größe jedoch nur bedingt im Elektrofahrzeug einsetzbar. DC-Spannung liegt unterhalb der AC-Spannung. Angaben im Datenblatt meist nur für AC. Ggf. Hersteller konsultieren. Vorteil: relativ günstig Nachteil: sehr groß und nur bedingt für EV geeignet
Streifensicherung	189 50A	Sind nur für DC-Spannungen bis max. 80V geeignet. Werden oft aus Unwissenheit in Elektrofahrzeugen mit über 100V eingesetzt. Vorteil: sehr günstig Nachteil: nur bis 80V
Photovoltaik Sicherung	SEED A SEED A SEED AS A SEED AS A SEED A SEE	Für DC-Spannungen > 60V und Ströme < 100A in der Größe 10 x 38mm. Vorteil: reine DC-Sicherung Nachteil: max. bis 100A

Zu meinem Entsetzen muss ich immer wieder feststellen, dass sogenannte ANL Sicherungshalter in Antriebssträngen von DIY-Elektrofahrzeugen verbaut werden.

Diese ANL Sicherungshalter sind für die Aufnahme von 12V Streifensicherungen gedacht und werden hauptsächlich für die Absicherung von hochleistungsfähigen HiFi Komponenten im Fahrzeug verwendet. Wie in der vorhergehenden Tabelle bereits beschrieben, sind sie auf keinen Fall für hohe Spannungen ausgelegt!

Meistens werden die Kabel in dem Sicherungshalter verschraubt. Gerade für den Antriebsstrang sollten die Verbindungen sehr niederohmig und sicher sein, was durch diese Art von Verschraubung

nicht gegeben ist. Eine niederohmige und sichere Verbindung kann durch Crimpen und anschließendem Verschrauben eines Ringkabelschuhs gewährleistet werden.

HV-Sicherung - Elektrofahrzeug-Umbau.de. Adobe Acrobat Dokument [942.8 KB] <u>Download</u>

0 Kommentare

¹ Alle angegebenen Preise sind Endpreise zzgl. Liefer-/Versandkosten. Aufgrund des Kleinunternehmerstatus gem. § 19 UStG erheben wir keine Umsatzsteuer und weisen diese daher auch nicht aus.

 $\underline{Impressum \mid Liefer- und Zahlungshedingungen \mid \underline{Datenschutz} \mid \overset{\square}{=} Druckversion \mid \underline{Sitemap} \ (c) \ Elektrofahrzeug-Umbau.de$